Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Animal Model Exp Med ; 3(4): 316-318, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-2270020

ABSTRACT

This study was designed to investigate the sensitivity of SARS-CoV-2 to different temperatures, to provide basic data and a scientific basis for the control of COVID-19 epidemic. The virus was dispersed in 1 mL basal DMEM medium at a final concentration of 103.2 TCID50/mL and then incubated at 4, 22, 30, 35, 37, 38, 39 and 40°C for up to 5 days. The infectivity of residual virus was titrated using the Vero E6 cell line. The results showed that the virus remained viable for 5 days at 4°C, and for 1 day only at 22 and 30°C. We found that the infectivity of the virus was completely lost after less than 12 hours at 37, 38 and 39°C, while at 40°C, the inactivation time of the virus was rapidly reduced to 6 hours. We show that SARS-CoV-2 is sensitive to heat, is more stable at lower temperatures than higher temperature, remains viable for longer at lower temperatures, and loses viability rapidly at higher temperatures.

2.
Animal Model Exp Med ; 5(1): 89-93, 2022 02.
Article in English | MEDLINE | ID: covidwho-2270021

ABSTRACT

BACKGROUND: The Omicron (B.1.1.529) SARS-COV-2 variant has raised serious concerns because of its unprecedented rapid rate of spreading and the fact that there are 36 mutations in the spike protein. Since the vaccine-induced neutralizing antibody targets are the spike protein, this may lead to the possibility of vaccine-induced humoral immunity escape. METHODS: We measured the neutralizing activity in vitro for Omicron and compared this with wild type (WH-09) and Delta variants in human and monkey sera from different types of immunity. The monkey sera samples were collected at 1 and 3 months post three-dose inactivated (PiCoVacc) and recombinant protein (ZF2001) vaccination. Human sera were collected from 1 month post three-dose inactivated vaccination. RESULTS: In inactivated vaccine sera, at 1/3 months post three-dose, geometric mean titers (GMTs) of neutralization antibody (NAb) against the Omicron variant were 4.9/5.2-fold lower than those of the wild type. In recombinant protein vaccine sera, GMTs of NAb against Omicron were 15.7/8.9-fold lower than those of the wild type. In human sera, at 1 month post three-dose inactivated vaccination, GMTs of NAb against Omicron were 3.1-fold lower than those of the wild type. CONCLUSION: This study demonstrated that despite a reduction in neutralization titers, cross-neutralizing activity against Omicron and Delta variants was still observed after three doses of inactivated and recombinant protein vaccination.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/administration & dosage , COVID-19 , Cross Reactions , SARS-CoV-2 , Animals , Antibodies, Neutralizing/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Haplorhini , Humans , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
3.
Signal Transduct Target Ther ; 7(1): 124, 2022 04 18.
Article in English | MEDLINE | ID: covidwho-1795804

ABSTRACT

Variants of concern (VOCs) like Delta and Omicron, harbor a high number of mutations, which aid these viruses in escaping a majority of known SARS-CoV-2 neutralizing antibodies (NAbs). In this study, Rhesus macaques immunized with 2-dose inactivated vaccines (Coronavac) were boosted with an additional dose of homologous vaccine or an RBD-subunit vaccine, or a bivalent inactivated vaccine (Beta and Delta) to determine the effectiveness of sequential immunization. The booster vaccination significantly enhanced the duration and levels of neutralizing antibody titers against wild-type, Beta, Delta, and Omicron. Animals administered with an indicated booster dose and subsequently challenged with Delta or Omicron variants showed markedly reduced viral loads and improved histopathological profiles compared to control animals, indicating that sequential immunization could protect primates against Omicron. These results suggest that sequential immunization of inactivated vaccines or polyvalent vaccines could be a potentially effective countermeasure against newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Macaca mulatta , SARS-CoV-2/genetics , Vaccination , Vaccines, Inactivated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL